
workshops.de

Workshop
 Angular Basics

workshops.de

Angular
A platform for building mobile and desktop web applications

workshops.de

Why Angular - In general

￫ Builds on experiences with AngularJS

￫ Focus on maintainability

￫ Prevents developers from doing the wrong thing

￫ Tries staying close to web standards / dom

￫ Common solutions for common problems

￫ i18n

￫ Animations

workshops.de

Why Angular - Speed

￫ Pre-rendering (Server Side Rendering)

￫ Offline compile (Ahead-of-Time compiling)

￫ View caching

￫ Web worker

workshops.de

Why Angular - Cross platform

Angular works...

￫ in the browser

￫ on the server

￫ in a mobile web container (Ionic)

￫ mobile native (NativeScript)

workshops.de

Pipes

HTTP

Forms

Services

View
Encapsulation

Bootstrapping

Dependency
Injection

Lifecycle
Hooks

Directives

Components

Routing

Observables

Input/Output

Angular

Angular in a Nutshell

workshops.de

Pipes

HTTP

Forms

Services

View
Encapsulation

Bootstrapping

Dependency
Injection

Lifecycle
Hooks

Directives

Components

Routing

Observables

Input/Output

Angular

Angular in a Nutshell

workshops.de

Angular CLI

workshops.de

Angular CLI

￫ No more seeds and fragmentation

￫ No more discussions about style

￫ Proven directory structure

Based on

￫ ember-cli

￫ webpack

http://ember-cli.com/
http://webpack.github.io/

workshops.de

Angular CLI - Generator

Type Usage

Component ng g component book-list

Directive ng g directive tooltip

Service ng g service book-data

Pipe ng g pipe shout

Interface ng g interface book

Class ng g class book

workshops.de

angular-cli

Features

￫ development web-server

￫ build process

￫ testing

￫ update

￫ add functionality

src
\- main.ts
\- app
 \- book
 \- book.component.css
 \- book.component.html
 \- book.component.ts
 \- book.service.ts
 \- app.module.ts
 \- app.component.ts
 \- index.html

$ ng --help

workshops.de

Validate your CLI Version

￫ Type ng --version in your command line

￫ Update version to the version your trainer recommends :)

workshops.de

Task
Preparation & Create new Project

workshops.de

@NgModule
The decorator

workshops.de

@NgModule - General

￫ Groups code and files

￫ Solves a specific problem/deal with a specific topic

￫ Shares functionalities between Angular modules

workshops.de

@NgModule - Decorator

￫ Defines the parts of the module, e.g. components, directives, ...

￫ Import dependencies

￫ Export parts to other modules

￫ Set base component

workshops.de

<code>@NgModule Decorator - Overview
module decorator

@NgModule({
 declarations: [// pipes, components/directives known in the whole module
 AppComponent,
 BookListComponent // is now known in the whole module
],
 imports: [// depends on other modules
 BrowserModule // imports and re-exports most basic Angular directives
],
 providers: [], // list of services
 bootstrap: [AppComponent] // there is one root component
})
export class AppModule {} // in most cases an empty class

workshops.de

The bootstrap
function

workshops.de

Bootstrap

Your application needs a starting point!

￫ The bootstrap function defines the main module

workshops.de

Bootstrap

Every module can have a bootstrap component!

￫ e.g. bootstrap: [AppComponent]

workshops.de

<code>Bootstrap
An example bootstrap

// app.module.ts
@NgModule({
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})

// main.ts
import { platformBrowserDynamic } from
'@angular/platform-browser-dynamic';
import { AppModule } from './app/';

platformBrowserDynamic().bootstrapModule(AppModule);

workshops.de

Task
Generate two Submodules

workshops.de

Components

workshops.de

Components

￫ fundamental building blocks

￫ application itself is a component

￫ break your application into small

components

C

CC

C CC

Navigation

App (Bootstrap)

BookList

BookRow

workshops.de

@Component, View, Component Class

@Component Decorator

Component Class

@Component({
 selector: 'book-list',
 template: `
 <h1>
 Book-Title: {{title}}
 </h1>
 `
})
class BookListComponent {
 title: string;
 constructor() {
 this.title = 'An awesome book';
 }
}

workshops.de

@Component
Decorator

workshops.de

Component Decorator

Component metadata / configuration

workshops.de

<code>Component Decorator - Overview
Component decorator for a component class

@Component({
 selector: 'book-detail',
 templateUrl: './book-detail.html'
})
export class BookDetailComponent {}

workshops.de

Component Decorator - Selector

￫ element-name: select by element name. (preferred way)

￫ .class: select by class name.

￫ [attribute]: select by attribute name.

￫ [attribute=value]: select by attribute name and value.

￫ :not(sub_selector):

￫ select only if the element does not match the sub_selector.

￫ selector1, selector2:

￫ select if either selector1 or selector2 matches.

workshops.de

Template Bindings

￫ {{ expression }} Syntax (curly braces)

￫ Display data inside of the component view

￫ Possible to execute simple calculations

{{ 1 + 2 + book.price }}

￫ Function calls

{{ showPrice(book) }}

￫ Limited set of JavaScript → Not a simple eval('...')

workshops.de

Component Class

￫ Defines data and behavior of your component

￫ Possible to inject services or other injectables

￫ Consists of

￫ Methods

￫ Objects

￫ Arrays

￫ Primitive data types (number, boolean, string, etc.)

workshops.de

Task
Generate a Navigation Component

workshops.de

DOM
Property- & Event-Bindings

workshops.de

DOM

￫ A DOM node is an object.

￫ It can store custom properties and methods like any other object.

workshops.de

<code>DOM
Example for properties

document.body.style = {
 backgroundColor: 'red'
};
alert(document.body.style.backgroundColor); // => red

workshops.de

<code>DOM
Example for events

function showCurrentTime() {
 console.log(new Date());
}

document.body.onclick = showCurrentTime;

workshops.de

Template Syntax

workshops.de

Event + Property Syntax

￫ Allows binding to the native DOM properties and events

￫ Allows interoperability with other frameworks

workshops.de

Properties

workshops.de

Property-Binding Syntax

￫ Pass data to the native component object in the DOM

￫ Defines an attribute binding on the element

workshops.de

<code>Properties - Example 1
Set the background style of an element.

<h2 [style.backgroundColor]="color">Title</h2>
// color is a variable

<h2 [style.backgroundColor]="'red'">Title</h2>
// color is a string

workshops.de

<code>Properties - Example 2
Set the href property of the link

<a [href]="book.url">
 {{ book.title }}

workshops.de

Events

workshops.de

Event-Binding Syntax

￫ Used with (event name)

￫ Defines an event listener on an element

￫ Listens to native DOM events

<a (click)="close()">

workshops.de

Event-Binding Syntax Example

￫ Executes a function that is defined on the component class

￫ Executes an expression

 <button (mouseover)="someFnOnClass()">Execute</button>
 <button (click)="isHidden = false">Show</button>

workshops.de

Event-Binding Syntax Events

￫ It's possible to access the event via $event

￫ $event is the actual native DOM-Event

<input [value]="name" (input)="handleEvent($event)">

workshops.de

Task
Create an Info-Box

workshops.de

Task
Output mouse cursor position

workshops.de

Inputs & Outputs

workshops.de

Inputs & Outputs

￫ Components are isolated

￫ Establish communication between components

workshops.de

Inputs

workshops.de

Input-Metadata

@Input decorator declares a data-bound input property

export class TitleBoxComponent {
 @Input() headerTitle: string;
}

Usage in template

<title-box headerTitle="Example Header String As Static String">
<title-box [headerTitle]="localVariableOnComponent">

workshops.de

Task
Create a title @Input

workshops.de

Outputs

workshops.de

Output-Metadata

@Output decorator declares an output property.

export class TitleBoxComponent {
 @Output() ping;
}

Usage in template

<title-box (ping)="...">

workshops.de

<code>Output-Metadata
usage of outputs combined with events

@Component({})
export class TitleBoxComponent {
 @Output() ping = new EventEmitter<string>();

 sendPing() {
 this.ping.emit('Msg');
 }
}

declare ping as EventEmitter

emit an Event

workshops.de

Output - Generics

￫ new EventEmitter<string>() creates an EventEmitter

￫ The emitted value has to be a string: this.ping.emit('Msg');

￫ $event contains the emitted event data → it has not to be the event
itself!

workshops.de

Task
Create a (titleClicked) @Output

workshops.de

Structure Syntax

workshops.de

￫ Structural directives begin with an asterisk (*)

￫ Syntactic sugar → easier to read/write

￫ Short form for template elements

Structure Syntax - * and <ng-template>

<div *ngIf="book">
 {{book.title}}
</div>

workshops.de

￫ Use *ngFor to iterate over an array of items

Structure Syntax - * and <ng-template>

<div *ngFor="let book of books">
 {{book.title}}
</div>

workshops.de

Task
Use *ngFor

workshops.de

Interfaces

workshops.de

Interfaces

￫ Type-checking of the shape of values

￫ Interfaces give a type to these shapes

workshops.de

<code>Interfaces - Without an interface
You can generate interfaces on the fly.

const book: { isbn: string, title: string };

book = {
 isbn: '978-1593272821',
 title: 'Eloquent JavaScript'
};

workshops.de

<code>Interfaces - With an interface
Give an interface a name and use it as a type for variables.

interface Book {
 isbn: string;
 title: string;
}

const book: Book;

book = {
 isbn: '978-1593272821',
 title: 'Eloquent JavaScript'
};

workshops.de

<code>Interfaces - Optional properties
Properties can be optional.

interface Book {
 isbn: string;
 title: string;
 pages?: number;
}

workshops.de

<code>Interfaces - Class types
Forgetting to implement ngOnInit throws a compile error.

interface OnInit {
 ngOnInit();
}

class BookListComponent implements OnInit {
 ngOnInit() {
 }
}

workshops.de

Services

workshops.de

Services

￫ “Local Singletons”

￫ Data-Model-Layer of our application

￫ May be injected via Dependency Injection (DI)

￫ Two roles:

￫ Provide methods or streams of data to subscribe to

￫ Provide operations to modify data

workshops.de

<code>Services - Example
Services are the Data-Model-Layer of our application

@Injectable({
 providedIn: 'root',
})
export class BookDataService {
 private books = [{...}, {...}, {...}];

 getBooks() {
 return this.books;
 }
}

workshops.de

<code>Services - Example
With providedIn:'root' the service is registered globally

@Injectable({
 providedIn: 'root',
})
export class BookDataService {
 private books = [{...}, {...}, {...}];

 getBooks() {
 return this.books;
 }
}

workshops.de

<code>Services - Example
They define an API to interact with them

@Injectable({
 providedIn: 'root',
})
export class BookDataService {
 private books = [{...}, {...}, {...}];

 getBooks() {
 return this.books;
 }
}

workshops.de

<code>Services
Create a service explicit for a module with the providers array

@NgModule({
 providers: [
 BookDataService
]
})

@Component({ … })
export BookListComponent {
 constructor(private bookData: BookDataService) {}
}

workshops.de

<code>Services
Create a service instance for a component and its children

@Component({
 // ...
 providers: [BookDataService]
})
export class BookListComponent {
 constructor(private bookData: BookDataService) {}
}

workshops.de

<code>Services
Create a service instance for a component and its children

@Component({
 // ...
})
export class BookListComponent {
 constructor(private bookData: BookDataService) {}
}

workshops.de

Dependency Injection

workshops.de

Dependency Injection - Why

￫ Keep component classes clean

￫ Better testable code

￫ Easy replacement of services

workshops.de

Without Dependency
Injection

workshops.de

<code>Dependency Injection
You have to create instances on your own.

@Component({ … })
class BookListComponent {
 private bookDataService;
 constructor() {
 this.bookDataService = new BookDataService();
 }
}

workshops.de

With Dependency
Injection

workshops.de

Dependency Injection

Dependency Injection is also called Inversion of control.

The injector has control over service instantiation.

workshops.de

<code>Dependency Injection
Injector is responsible for creating instances.

@NgModule({
 providers: [BookDataService],
})
export class AppModule { }

@Component({})
class BookListComponent {
 constructor(private bookDataService: BookDataService) {}
}

workshops.de

<code>Dependency Injection
Injector is responsible for creating instances.

@Component({
 providers: [BookDataService]
})
class BookListComponent {
 constructor(private bookDataService: BookDataService) {}
}

workshops.de

Dependency Injection
￫ Services can have dependencies, too

￫ Injects service instances created in a component, where service is

used!

￫ Watch out for dependency cycles!
service 'S1', (S2, S5, S6)
service 'S2', (S3, S4, S5)
service 'S3', (S6)
service 'S4', (S3, S5)
service 'S5', ()
service 'S6', ()

workshops.de

Dependency Injection

￫ Based on the type of a class

￫ An instance is available for all child components, too

workshops.de

Dependency Injection

● Injector per component

● Each component has an

own injector

● Base injector = RootInjector

● Each nested component has

a ChildInjector

App

Book

BookList

Book

providers: [
 BookDataService
]

App
RootInjector

BookList
ChildInjector

Book
...

Book
...

providers: [
 BookDataService
]

workshops.de

Dependency Injection

● New service instance for each

BookComponent
Book

BookList

Book

providers: [
 BookDataService
]

constructor(data1:
BookDataService)
{}

Book Book

providers: [
 BookDataService
]

constructor(data2:
BookDataService)
{}

workshops.de

Dependency Injection

● Share one service instance

● Create instance in parent

component BookList

● Only inject service in

BookComponent → no

providers!

Book

BookList

Book

constructor(
 data: BookDataService
) { … }

BookList
ChildInjector

Book Book

constructor(
 data: BookDataService
) { … }

providers: [
 BookDataService
]

workshops.de

Dependency Injection - @Injectable()

￫ Annotation of classes that use DI

￫ Metadata to compile the type-information to the ES5 code

￫ Without an annotation you lose the type information

workshops.de

Task
Create a BookData service

workshops.de

Pipes

HTTP

Forms

Services

Subjects

Bootstrapping

Dependency
Injection

Lifecycle
Hooks

Directives

Components

Routing

Observables

Input/Output

Angular

Angular in a Nutshell

workshops.de

Observables

workshops.de

Why we’re talking about it?

Angular is using RxJS Observables for async.

workshops.de

What is RxJS

￫ seeing events as collections you can

￫ map

￫ filter

￫ …

workshops.de

Promises vs. Observables

Observables are built

to solve problems around async.

(avoid “callback hell”)

workshops.de

Observables

￫ streams

￫ any number of things

￫ Lazy → Only generate values when subscribed to (cold)

￫ can be “unsubscribed” → can be canceled

workshops.de

Observables - subscribing

.subscribe(nextFn, errorFn, completeFn)

Without subscribing, an Observable will not emit data

workshops.de

Observables Cold vs. Hot

workshops.de

Operator

￫ Operators are functions

￫ allow complex asynchronous code to be easily composed in a

declarative manner.

 observableInstance.pipe(operator1(), operator2(), ...).

workshops.de

Observables - Generics

￫ Functions should return typed data

￫ Extend type informations of observables with generics

￫ E.g. getBooks(): Observable<Book[]> {}

workshops.de

Transformation Operators

workshops.de

.map()

workshops.de

.pluck()

workshops.de

.pairwise()

workshops.de

Filtering Operators

workshops.de

.filter()

workshops.de

.debounceTime(n: milliseconds)

workshops.de

distinctUntilChanged()

workshops.de

Combination Operators

workshops.de

merge()

workshops.de

startWith()

workshops.de

Error Handling

workshops.de

Operators for Error Handling

￫ catchError

￫ retry

￫ retryWhen

￫ throwError

workshops.de

Observable Creation Operators

workshops.de

You are usually not creating

your own observables!

workshops.de

Observables creation helpers

￫ of(value1, value2, …)

￫ from(promise/iterable/observable)

￫ fromEvent(item, eventName)

￫ Angular HttpClient

￫ Many more

workshops.de

Task
Create an Observable

workshops.de

Observables - cancellation

const subscription = observable.subscribe(...)

subscription.unsubscribe()

workshops.de

<code>Need to unsubscribe!

BookComponent implements OnInit, OnDestroy {
private subscription: Subscription;
ngOnInit() {

 this.subscription = this.bookData
 .getBooks()
 .subscribe(books => this.books = books);
}

ngOnDestroy() {
this.subscription?.unsubscribe()

}
}

workshops.de

HttpClient

workshops.de

Using the HttpClient

￫ Basic HTTP handling

￫ import {HttpClientModule} from '@angular/common/http'

￫ import {HttpClient} from '@angular/common/http'

￫ Provides methods for

￫ GET

￫ PUT

￫ POST

￫ DELETE

workshops.de

<code>Http service
HttpClientModule has to be imported

import { HttpClientModule } from '@angular/common/http';

@NgModule({
 imports: [
 BrowserModule,
 HttpClientModule
],
 ...
})

workshops.de

HttpClient Interface

Name Parameter Returnvalue

get url, options? Observable<TPayload>

post url, body, options? Observable<TPayload>

put url, body, options? Observable<TPayload>

delete url, options? Observable<TPayload>

patch url, body, options? Observable<TPayload>

head url, options? Observable<TPayload>

request Request, options? Observable<TPayload>

workshops.de

<code>HttpClient usage
HttpClient functions return response observables

import { HttpClient } from '@angular/common/http';
…
 constructor(private http: HttpClient) {}

 getBooks() {
 return this.http.get<Book[]>(this.baseUrl)
 }
…

workshops.de

HttpClient

￫ Returns an observable

￫ Expects data in JSON format

workshops.de

<code>HttpClient - Full response
Use observe: 'response' to get the full response

http
 .get<Book[]>('/books', {observe: 'response'})
 .subscribe(resp => {
 console.log(resp.headers.get('X-Custom-Header'));
 console.log(resp.body);
 });

workshops.de

<code>HttpClient service
Subscribe to service observable in a component

constructor(private bookData: BookDataService) {
 this.bookData
 .getBooks()
 .subscribe(books => this.books = books);
}

workshops.de

Task
Load data from local API

workshops.de

Component
Lifecycle Hooks

workshops.de

￫ Components and Directives have a lifecycle managed by Angular

￫ Visibility of key moments and way to act when they occur

￫ Classes can implement one or more interfaces with hooks

Component Lifecycle Hooks

workshops.de

Component Lifecycle Hooks - Interfaces

import {Component, OnInit} from '@angular/core'

@Component({…})
class BookListComponent implements OnInit {
 ngOnInit(): void {
 console.log('onInit');
 }
}

Lifecycle interfaces are optional but
recommended

Each Lifecycle hook has an interface
without the leading ng

workshops.de

Most important
hooks

workshops.de

Component Lifecycle Hooks - Execution

￫ Injector instantiates component

with new

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

@Component({
 selector: 'my-component',
 …
})
class MyComponent {
 constructor () {}
 …
}

workshops.de

Component Lifecycle Hooks - Execution

￫ Check for initial values on @Inputs

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

<my-component [anInput]="value">
</my-component>
…
class MyComponent {
 @Input() anInput;
 …
}

workshops.de

Component Lifecycle Hooks - Execution

￫ Initial values are set → called only once

￫ For heavy or async work

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

class MyComponent implements OnInit {
 @Input() anInput;

 constructor() { // this.anInput = undefined }

 ngOnInit() { // this.anInput is set }
}

workshops.de

Component Lifecycle Hooks - Execution

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

￫ Every time an Input binding changes

workshops.de

Component Lifecycle Hooks - Execution

￫ Cleanup before component is

removed

￫ Remove event listeners

￫ Remove observable subscribers

￫ Clean up intervals and timeout

￫ Inform other program parts

￫ Called only once

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

workshops.de

Component Lifecycle Hooks - Execution

Simplified

1. Component is instantiated

2. OnChanges: initial @Input values

3. OnInit: once after first OnChanges

4. OnChanges: get changed @Input

5. OnDestroy: component is destroyed

Constructor

OnChanges

OnInit

OnChanges

OnDestroy

workshops.de

After component
creation

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentInit

AfterContentChecked

AfterViewInit

AfterViewChecked

￫ Every time change detection runs

￫ Custom change detection

function

Constructor

OnChanges

OnInit

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentInit

AfterContentChecked

AfterViewInit

AfterViewChecked

￫ Content = everything between component tags

￫ ngContent projects content to view after creation

￫ Hook called after projection finished → only

once

@Component({
 selector: 'my-component',
 template: '...<ng-content></ng-content>...'
})
…
<my-component><p>Hello</p></my-component>

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentInit

AfterContentChecked

AfterViewInit

AfterViewChecked

￫ After change detection → content is checked

￫ Called every time after DoCheck hook

￫ Initial check after content is initialised

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentInit

AfterContentChecked

AfterViewInit

AfterViewChecked

￫ View = template + bindings

￫ Called after view and subviews are initialised →

only once

@Component({
 selector: 'my-component',
 template: `
 <h1>Hello</h1>
 <another-component></another-component>
 `
})

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentInit

AfterContentChecked

AfterViewInit

AfterViewChecked

￫ After change detection → view is checked

￫ Called every time after DoCheck hook and after

AfterContentChecked

￫ Initial call after the view is initialised

workshops.de

After change
detection

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentChecked

AfterViewChecked

OnChanges

￫ After a change

￫ Change detection calls custom DoCheck function

￫ Content and view are checked

￫ Inform about possible changes

Changes

workshops.de

Component Lifecycle Hooks - Execution

DoCheck

AfterContentChecked

AfterViewChecked

OnChanges

￫ After the check hooks are called once → change

detection runs again to check for unexpected

changes → triggers the check hooks again!

￫ If Angular notices changes after first change

detection run → error in JavaScript console (not

in production mode)

Changes

workshops.de

Task
Component LifeCycle Basic

workshops.de

Pipes

workshops.de

Angular pipes are a way to write display-value

transformations that you can declare in your

HTML

workshops.de

<code>Angular Pipes
Use the Pipe operator | to use pipes in your templates

<div>
 {{ someName | uppercase }}
 {{ someName | lowercase }}
 {{ someDate | date:"MM/dd/yy" }}
</div>

workshops.de

Built-in Pipes

￫ AsyncPipe

￫ UpperCasePipe

￫ LowerCasePipe

￫ JsonPipe

￫ SlicePipe

￫ DecimalPipe

￫ PercentPipe

￫ CurrencyPipe

￫ DatePipe

workshops.de

Async Pipe

workshops.de

The AsyncPipe accepts a Promise or Observable

as input and subscribes to the input

automatically, eventually returning the emitted

values.

workshops.de

Async Pipe

￫ Subscribe to Observable

￫ UnSubscribe on component destruction

￫ Built-In Pipe

￫ Simple use: {{ books$ | async }}

workshops.de

<code>Async Pipe
For every async a new subscription is made. Try to minimize use of async

<li *ngFor="let book of books$ | async">
 {{book.title}}

{{ (books$ | async).length }}

Two subscriptions created.
Could cause performance issues

workshops.de

<code>Async Pipe
Finnish Notation. Naming observables with an $ suffix

<li *ngFor="let book of books$ | async">
 {{book.title}}

workshops.de

Task
Use the async pipe

workshops.de

Cheat Sheets

workshops.de

Types
Booleans boolean

Numbers number

Strings string

Lists number[] | Array<number>

Maps interface /* separated defined and named */ | {…} /* inline */

Enumeration enum Employees {Miriam, Matthias}

Any any

Void void // only as return type for functions/methods

Type Casting <type> | varName as type

workshops.de

ES2015/TS Classes

class nicer way to define prototypes

public the default for attributes and methods

private only accessible within their declaring class

protected accessible from within their declaring class and classes derived
from their declaring class

static methods or attributes can be called or get and set without an
instance

extends class gets extended by another class

workshops.de

￫ interface

create a shape with types

￫ implements

classes can implement an interface

Interfaces - The new keywords

workshops.de

Component Decorator - Interface

Name Description Default

selector Define CSS Selector to match the element undefined

template View-Template as string ' ' (Empty String)

templateUrl View-Template via URL undefined

styleUrls[] Reference to styles via URL []

directives[] Inject other directives []

pipes[] Inject other pipes []

providers[] Define the injectable services []

workshops.de

Component Decorator - Interface

Name Description Default

encapsulation Define the scoping of styles Emulated

changeDetection specify a custom changeDetection CheckAlways

● there are more, but this are the most used and important ones

workshops.de

Component Lifecycle Hooks

Hook method Interface Description

ngOnChanges OnChanges Called when an input or output binding value
changes

ngOnInit OnInit After the first ngOnChanges

ngDoCheck DoCheck Developer's custom change detection

ngAfterContentInit AfterContentInit After component content initialized

ngAfterContentChecked AfterContentChecked After every check of component content

ngAfterViewInit AfterViewInit After component's view(s) are initialized

ngAfterViewChecked AfterViewChecked After every check of a component's view(s)

ngOnDestroy OnDestroy Just before the directive is destroyed

workshops.de

View Encapsulation

Mode Description

ViewEncapsulation.None No encapsulation, styles in head

ViewEncapsulation.Emulated
Styles in head with attribute suffix (scoped
styles)

ViewEncapsulation.ShadowDom Use the Shadow DOM

workshops.de

symetics

